An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels

نویسندگان

  • Christoph Fahlke
  • Reinhardt Riidel
  • Nenad Mitrovic
  • Ming Zhou
  • Alfred L. George
چکیده

A point mutation (D136G) predicting the substitution of glycine for aspartate in position 136 of the human muscle Cl- channel (hClC-1) causes recessive generalized myotonia. Heterologous expression of a recombinant D136G produces functional Cl- channels with profound alterations in voltage-dependent gating, without concomitant changes in pore properties. The mutant exhibits slowly activating current upon hyperpolarization, in contrast to wild-type channels, which display time-dependent current decay (deactivation) at negative membrane potentials. Steady-state activation of D136G depends upon the transmembrane Cl- gradient, reaching zero at voltages positive to the Cl- reversal potential in physiological Cl- distribution. This explains the reduced sarcolemmal Cl- conductance that causes myotonia. The functional disturbances exhibited by D136G may stem from a defect in the ClC-1 voltage sensor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspartic acid residue D3 critically determines Cx50 gap junction channel transjunctional voltage-dependent gating and unitary conductance.

Previous studies have suggested that the aspartic acid residue (D) at the third position is critical in determining the voltage polarity of fast V(j)-gating of Cx50 channels. To test whether another negatively charged residue (a glutamic acid residue, E) could fulfill the role of the D3 residue, we generated the mutant Cx50D3E. V(j)-dependent gating properties of this mutant channel were charac...

متن کامل

Mechanism of voltage-dependent gating in skeletal muscle chloride channels.

Voltage-dependent gating was investigated in a recombinant human skeletal muscle Cl- channel, hCIC-1, heterologously expressed in human embryonic kidney (HEK-293) cells. Gating was found to be mediated by two qualitatively distinct processes. One gating step operates on a microsecond time scale and involves the rapid rearrangement of two identical intramembranous voltage sensors, each consistin...

متن کامل

Comment on ion transit pathways and gating in ClC chloride channels.

ClC chloride channels possess a homodimeric structure in which each monomer contains an independent chloride ion pathway. ClC channel gating is regulated by chloride ion concentration, pH and voltage. Based on structural and physiological evidence, it has been proposed that a glutamate residue on the extracellular end of the selectivity filter acts as a fast gate. We utilized a new search algor...

متن کامل

Mutation of a Single Residue in the S2–S3 Loop of Cng Channels Alters the Gating Properties and Sensitivity to Inhibitors

We previously found that native cyclic nucleotide-gated (CNG) cation channels from amphibian rod cells are directly and reversibly inhibited by analogues of diacylglycerol (DAG), but little is known about the mechanism of this inhibition. We recently determined that, at saturating cGMP concentrations, DAG completely inhibits cloned bovine rod (Brod) CNG channels while only partially inhibiting ...

متن کامل

Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel

Autosomal dominant myotonia congenita (Thomsen's disease) is caused by mutations in the muscle chloride channel CIC-1. Several point mutations found in affected families (I29OM, R317Q, P480L, and Q552R) dramatically shift gating to positive voltages in mutant/WT heterooligomeric channels, and when measurable, even more so in mutant homooligomers. These channels can no longer contribute to the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1995